首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   39篇
  国内免费   3篇
测绘学   12篇
大气科学   35篇
地球物理   237篇
地质学   211篇
海洋学   41篇
天文学   97篇
综合类   6篇
自然地理   33篇
  2023年   1篇
  2022年   10篇
  2021年   13篇
  2020年   25篇
  2019年   19篇
  2018年   33篇
  2017年   27篇
  2016年   40篇
  2015年   29篇
  2014年   30篇
  2013年   30篇
  2012年   40篇
  2011年   54篇
  2010年   32篇
  2009年   35篇
  2008年   34篇
  2007年   25篇
  2006年   40篇
  2005年   24篇
  2004年   28篇
  2003年   16篇
  2002年   16篇
  2001年   9篇
  2000年   8篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   8篇
  1994年   3篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有672条查询结果,搜索用时 0 毫秒
51.
A model is proposed describing the mechanical evolution of a shear zone along compressional and extensional plate boundaries, subject to constant strain rate. The shear zones are assumed as viscoelastic with Maxwell rheology and with elastic and rheological parameters depending on temperature and petrology. Stress and strain are computed as functions of time and depth. For both kinds of boundaries the model reproduces the existence of a shallow seismogenic zone, characterized by a stress concentration. The thickness of the seismogenic layer is evaluated considering the variations of shear stress and frictional strength on faults embedded in the shear zone. Assuming that a fault dislocation takes place, the brittle-ductile transition is assumed to occur at the depth at which the time derivative of total shear stress changes from positive to negative values. The effects of different strain rates and geothermal gradients on the depth of the brittle-ductile transition are studied. The model predictions are consistent with values inferred from seismicity data of different boundary zones.  相似文献   
52.
An analysis is presented of the orbital injection errors for the Lageos III satellite mission. Several methods are introduced for the solution of the Inverse Problem in the Theory of Errors. The novelty of the present approach consists in the use of the full geopotential covariance matrix in the error propagation equations. The GEM-T1 covariance matrix is used. It is found that by properly accounting for the correlation among the even zonal harmonic coefficients the acceptable error bounds increase by an order of magnitude with respect to the case when only the variances are used. The most stringent constraint, even when using the full covariance, is on inclination, whose nominal value must be realized within approximately 0.1° for the recovery of the Lense-Thirring precession to be successful at the 3% level (accounting only for injection errors). The associated tolerance in the semimajor axis is about 30 km while that in eccentricity is approximately 0.2. However, if the errors in semimajor axis and eccentricity can be kept to the routinely achievable levels respectively of 10 km and 0.004, then the tolerance in inclination can be relaxed to 0.2°.  相似文献   
53.
A new method for calculating the perturbation spectrum in the framework of Kaula's linear satellite theory (LST) is introduced. The novelty of this approach consists in using recent results on the spectral decomposition of the perturbation frequencies in LST to provide a closed formulation for the amplitude and the phase of each line in the perturbation spectrum. The theory presented here can be applied to perturbations in the elements or in the radial and transverse directions due to the geopotential or to the tides. Separate algorithms are developed for application to orbits with circulating or frozen perigee.  相似文献   
54.
Recharge estimation for transient ground water modeling   总被引:11,自引:0,他引:11  
Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.  相似文献   
55.
The feasibility and efficiency of a seismic retrofit solution for existing reinforced concrete frame systems, designed before the introduction of modern seismic‐oriented design codes in the mid 1970s, is conceptually presented and experimentally investigated. A diagonal metallic haunch system is introduced at the beam–column connections to protect the joint panel zone from extensive damage and brittle shear mechanisms, while inverting the hierarchy of strength within the beam–column subassemblies and forming a plastic hinge in the beam. A complete step‐by‐step design procedure is suggested for the proposed retrofit strategy to achieve the desired reversal of strength hierarchy. Analytical formulations of the internal force flow at the beam–column‐joint level are derived for the retrofitted joints. The study is particularly focused on exterior beam–column joints, since it is recognized that they are the most vulnerable, due to their lack of a reliable joint shear transfer mechanism. Results from an experimental program carried out to validate the concept and the design procedure are also presented. The program consisted of quasi‐static cyclic tests on four exterior, ? scaled, beam–column joint subassemblies, typical of pre‐1970 construction practice using plain round bars with end‐hooks, with limited joint transverse reinforcement and detailed without capacity design considerations. The first (control specimen) emulated the as‐built connection while the three others incorporated the proposed retrofitted configurations. The experimental results demonstrated the effectiveness of the proposed solution for upgrading non‐seismically designed RC frames and also confirmed the applicability of the proposed design procedure and of the analytical derivations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
56.
The name Calabrian was introduced in the geological literature by the French stratigrapher Maurice Gignoux in 1910, and later described in his important monograph (633 pages) "Les formations marines pliocknes et quaternaires de l'ltalie du sud et de la Sicile "published in 1913. Detailed data were provided on several sections (Santa Maria di Catanzaro, Caraffa, Monasterace, Palermo) and on their fossil content. The Calabrian Stage has commonly been used for over fifty years as the oldest subdivision of the Qua- ternary, notably in the time scales of Berggren & van Cou- vering (1974) and Haq & Eysinga (1987). However, after the GSSP for the Pliocene/Pleistocene boundary (P/P) was approved by INQUA in 1982 and ratified by lUGS in 1984 at the Vrica section of Calabria, there was a decline in the usage of the stage name, and an increasing tendency by many Quaternary workers to question the boundary stratotype. This was because there was increasing evidence that it did not correspond to the beginning of the "ice age". In doing so, they were not complying with the recommendations presented at the 18th International Geological Congress (IGC) in London, 1948 (Oakley, 1950).  相似文献   
57.
The results of a potentiometric investigation (by ISE-H+, glass electrode) on the speciation of phytate ion (Phy12−) in an ionic medium simulating the major components (Na+, K+, Ca2+, Mg2+, Cl and SO42−) of natural seawater, at different salinities and t = 25 °C, are reported. The work was particularly aimed at determining the possible formation of mixed Ca2+–Mg2+–phytate ion pairs, and to establish how including the formation of these mixed species would affect the speciation modeling in seawater media. After testing various speciation models, that considering the formation of the MgCaH3Phy5−, MgCaH4Phy4−, Mg2CaH3Phy3− and Mg2CaH4Phy2− species was accepted, and corresponding stability constants were determined at two salinities (S = 5, 10). A discussion is reported both on the choice of the experimental conditions and on the possibility to extend these results to those typical of real seawater. A detailed procedure is also described to demonstrate that the stability of these species is higher than that statistically predicted. As reported in literature, a parameter, namely log X, has been determined in order to quantify this extra stability for the formation of each mixed species at various salinities. For example, at S = 10, log X113 = 2.67 and log X114 = 1.37 for MgCaH3Phy5− and MgCaH4Phy4− (statistical value is log Xstat = 0.60), and log X213 = 6.11 and log X214 = 2.15 for Mg2CaH3Phy3− and Mg2CaH4Phy2− (log Xstat = 1.43), respectively. Results obtained also showed that the formation of these species may occur even in conditions of low salinity (i.e. low concentration of alkaline earth cations) and low pH (i.e., more protonated ligand).  相似文献   
58.
59.
Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques. In this study, several methods for computing these unstable resonant orbits are explored including grid searches, flyby maps, and continuation. Families of orbits are computed focusing on orbits with multiple loops near the secondary in the Jupiter–Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonant orbits, and the continuation of several specific orbits is explored in more detail.  相似文献   
60.
The analysis of relative motion of two spacecraft in Earth-bound orbits is usually carried out on the basis of simplifying assumptions. In particular, the reference spacecraft is assumed to follow a circular orbit, in which case the equations of relative motion are governed by the well-known Hill–Clohessy–Wiltshire equations. Circular motion is not, however, a solution when the Earth’s flattening is accounted for, except for equatorial orbits, where in any case the acceleration term is not Newtonian. Several attempts have been made to account for the \(J_2\) effects, either by ingeniously taking advantage of their differential effects, or by cleverly introducing ad-hoc terms in the equations of motion on the basis of geometrical analysis of the \(J_2\) perturbing effects. Analysis of relative motion about an unperturbed elliptical orbit is the next step in complexity. Relative motion about a \(J_2\)-perturbed elliptic reference trajectory is clearly a challenging problem, which has received little attention. All these problems are based on either the Hill–Clohessy–Wiltshire equations for circular reference motion, or the de Vries/Tschauner–Hempel equations for elliptical reference motion, which are both approximate versions of the exact equations of relative motion. The main difference between the exact and approximate forms of these equations consists in the expression for the angular velocity and the angular acceleration of the rotating reference frame with respect to an inertial reference frame. The rotating reference frame is invariably taken as the local orbital frame, i.e., the RTN frame generated by the radial, the transverse, and the normal directions along the primary spacecraft orbit. Some authors have tried to account for the non-constant nature of the angular velocity vector, but have limited their correction to a mean motion value consistent with the \(J_2\) perturbation terms. However, the angular velocity vector is also affected in direction, which causes precession of the node and the argument of perigee, i.e., of the entire orbital plane. Here we provide a derivation of the exact equations of relative motion by expressing the angular velocity of the RTN frame in terms of the state vector of the reference spacecraft. As such, these equations are completely general, in the sense that the orbit of the reference spacecraft need only be known through its ephemeris, and therefore subject to any force field whatever. It is also shown that these equations reduce to either the Hill–Clohessy–Wiltshire, or the Tschauner–Hempel equations, depending on the level of approximation. The explicit form of the equations of relative motion with respect to a \(J_2\)-perturbed reference orbit is also introduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号